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a b s t r a c t

In QSRR the retention is modeled as a function of structural or molecular descriptors. Since the structural
datasets can be very large a selection of informative variables is often required. But beside the question
which subset of variables (descriptors) produces optimum predictions one should answer the question:
can good prediction be used in the QSRR community even if the physical meaning of applied descriptors
is hard to interpret?

The main focus in this paper is put on different modeling methodologies applied and molecular descrip-
tors used in the QSRR approaches. Besides the widely used multiple linear regression (MLR), these
methodologies include partial least squares (PLS), uninformative variable elimination partial least squares
(UVE-PLS), genetic algorithms (GA) prior to MLR or PLS. The comparison will focus on the predictive per-
formance but also on the descriptors found to be most important for the chromatographic retention
SRR

roteomics prediction of peptides. The results of this study showed that stepwise-MLR and UVE-PLS are producing
better predictions than the rest of the studied methodologies. From the variables selected by various
methodologies one can see that the important information for the retention mechanism of RPLC was
given by 2D-, 3D-descriptors and descriptors from the empirical QSRR equations, which bring the infor-
mation about hydrogen-bonding properties, molecular size, and complexity. Overall, for the considered

RR m
data set the empirical QS

. Introduction

Reversed-phase liquid chromatography (RPLC) probably still is
ne of the most frequently used techniques utilized to separate
ixtures in pharmaceutical and biomedical analyses. Owing to the
ide range of stationary phases and the great variety of possible

hromatographic systems the appropriate selection of a suitable
tarting point for method development has become more diffi-
ult. Usually screening or trial-and-error approaches are applied
hich are time consuming and cost demanding. In order to over-

ome this problem the mathematical models that are able to
redict chromatographic retention from chemical structure has
een extensively investigated over the last two decades. If one was
apable to predict the retention of analytes and/or the separation
f a mixture on chromatographic systems relatively well, then the

heoretical approach could, in some part, replace the time consum-
ng experimental. More recently also models were built to predict
he retention of peptides based on their structural descriptors. They
hould increase the confidence in the identification of peptides

∗ Corresponding author. Tel.: +32 2 4774734; fax: +32 2 4774735.
E-mail address: yvanvdh@vub.ac.be (Y. Vander Heyden).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.03.028
odels were predicting the peptides retention best.
© 2010 Elsevier B.V. All rights reserved.

in the context of proteomic analyses [1–4]. Among all prediction
methods, quantitative structure–retention relationships (QSRR),
which are statistically derived relationships between chromato-
graphic parameters and descriptors characterizing the molecular
structure of analytes, are the most popular [5–10].

To undertake a QSRR study one needs a set of quantitatively
comparable retention parameters for a sufficiently large series of
analytes and a set of their structural descriptors. The main problem
in this area is that the number of structural descriptors which can
be ascribed to an individual analyte is practically unlimited. Gen-
erally, they are classified as physicochemical, quantum chemical,
theoretical (topological, geometrical) etc. The advantage of physic-
ochemical descriptors is that they are generally clearly related to
the retention, but they are often either unavailable or contain large
errors. The advantage of quantum chemical descriptors is that they
provide insights into the mechanism of chromatographic retention
at the molecular or even submolecular level. Unfortunately, their
correlation with retention is rather weak and they also are not easy

to calculate. The third type of descriptors, the theoretical, are easily
calculated, but they are not always evidently related to the specific
retention phenomena [8,11].

Analyte descriptors calculated from the molecular formula or
a molecular graph appear attractive, but the question is whether
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hey bear actual information on the property of an analyte or only
n its symbolic representation. Therefore, two main approaches
f choosing the molecular descriptors to include in a QSRR model
xist. In the first, QSRR models are built from an a priori chosen
mall set of molecular descriptors, which are selected based on
heir physicochemical properties, well known to the chemists. In
he second, QSRR models are derived starting from a large set of

olecular descriptors (hundreds or thousands), from which the
est are selected by means of variable selection methods or by the
odeling technique itself.
From a chemical point of view, only those mathematical descrip-

ors of a chemical structure are valuable, which could next be
elated to physicochemical properties of the analyte. Numerous
onempirical structural descriptors were reported to contribute
o various multivariate QSRR models [12,13]. On the other hand,
ne might invent thousands of new descriptors without improving
heir statistical quality and physical meaning. The question thus
rises whether a good prediction, which proves the validity of a
iven QSRR equation also if the physical meaning of the applied
escriptors is vague is to be applied in a QSRR context (in the QSRR
ociety), or whether it is better to build a QSRR model based on the
escriptors with a well known physicochemical meaning even if
he prediction ability might be less good than in the previous case?
f course the question only is to be answered for situation where

he former models are clearly better.
Since the success of the QSRR depends mainly on the selection

f the most informative descriptors of the analytes from a large
ets of often mutually correlated descriptors, a suitable descriptor
election method is a key for proper model building.

Multiple linear regression (MLR) is without doubt the most fre-
uently applied technique in building QSRR models, but also several
ther methodologies have more recently been applied, like partial
east squares (PLS), uninformative variable elimination PLS (UVE-
LS), MLR or PLS combined with genetic algorithms (GA) for feature
election [1,14], classification and regression trees (CART) [15],
ultivariate adaptive regression splines (MARS) [16] and artificial

eural networks (ANN) [17].
The scope of this work is to compare the two QSRR building

trategies and to try to find an answer to the above posed question.
everal modeling methodologies will be compared.

. Theory

.1. Stepwise multiple linear regression method for QSRR model
uilding

As already mentioned, multiple linear regression (MLR) is very
opular as technique to build the models in QSRR studies. In MLR,
regression analysis is carried out in order to obtain statistically

ignificant models, where the retention in a given chromatographic
ystem is presented as a function of a limited number of molecular
escriptors.

QSRR models might be built from an a priori chosen small set of
escriptors of known physicochemical properties or starting from a

arge set of potentially useful molecular descriptors. Normally, MLR
s such cannot be used in the latter situation, because in most cases
he number of available descriptive variables (descriptors) exceeds
he number of objects (chromatographed substances). Therefore,
rior to the building of a QSRR model a variable selection is needed.
or that purpose a stepwise procedure can be used, where a for-

ard descriptor selection iterates with a backward elimination.
ith stepwise-MLR the variables are selected step by step, from the

riginal data matrix X (matrix of descriptors), taking into account
heir correlation with y (retention values). First, the variable that
as the highest correlation with y is selected, and then a regression
1 (2010) 1711–1718

coefficient is obtained from the univariate regression model and its
significance is tested using the F-test [18]. If this coefficient is signif-
icant the variable is included into the model. This step of including
new variables into the model is called forward selection. After each
inclusion a partial F-test is performed to test the significance of the
variables that were already in the model. If variables are found that
do not contribute significantly to the regression anymore, they are
eliminated from the model. This step is called backward elimina-
tion. The entire process is repeated until no improvements of the
model are achieved anymore by adding or removing variables. One
of the drawbacks of the method is that the stepwise-MLR procedure
is based on data fitting, i.e. the obtained model might be overfitted,
which is disadvantageous for its predictive properties. To avoid this,
cross-validation is applied, which tests the predictive capabilities
of the models.

2.2. Partial least squares (PLS)

The partial least squares method (PLS) is based on indentifying
a linear relationship between a dependent variable, y, and a set of
latent explanatory variables. The PLS approach helps to deal with
the multicollinearity problem by replacing the original variables
with a few latent orthogonal, so-called PLS factors. These factors
are linear combinations of the original variables (X) and maximize
the covariance between X (the matrix of molecular descriptors) and
y (the RPLC retention).

The optimal model complexity, i.e. the optimal number of the
latent factors in the PLS model, can be determined by leave-one-out
cross-validation (LOO-CV). Optimal complexity of the PLS model
corresponds to the number of factors, for which the (nearly) mini-
mal CV error appears.

2.3. Uninformative variable elimination partial least squares
(UVE-PLS)

To eliminate irrelevant variables in QSRR model building the
UVE-PLS is applied. The main idea of this approach is that the
original data set X is augmented with a matrix of artificial ran-
dom variables with normal distribution and very small amplitudes
(absolute values of the order of 10−10) to prevent their influence on
the regression model. In our study different numbers of noise vari-
ables were simulated: 500, 250 and 125. The calculation showed
that with different numbers of noise variables the optimal com-
plexity of the model remains the same while the number of chosen
descriptors and the root mean squared error of prediction (RMSEP)
decreases with a decreasing number of noise variables. Moreover,
to avoid overfitting and to validate the variable selection step, the
elimination procedure was repeated 100 times. The final set of rele-
vant variables was determined based on the frequency of choosing
the individual variables in the different retained sets of variables.
A retained variable was considered as relevant if it was retained in
more than 70% of runs [19].

2.4. Genetic algorithms for variable selection (GA-MLR/GA-PLS)

For some techniques, such as MLR, data sets with more vari-
ables than objects are problematic. Genetic algorithms are adaptive
heuristic search algorithms that are intended for feature selection
on larger data sets. GA used in a combination with the MRL or PLS
methods provide a subset of variables that are most suited for use
within these techniques.
GA are global optimization procedures based on evolutionary
computation and survival of the fittest. GA proceed first by ran-
domly generating an initial population of objects, described by
given variables, that through mutation, crossover and selection
after a number of generations provides an optimal or near opti-
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al solutions. The size of this population remains then constant
long the procedure. Each object is represented by a finite string
f symbols (the genome) encoding a possible solution in the data
pace. At every iteration step (generation), the objects in the current
opulation are tested according to some quality criterion (fitness
unction). To form a new population of objects (the next genera-
ion), they are selected according to their fitness. Selection alone
annot introduce new variables/objects into the population, which
s necessary in order to make the solution as independent of the ini-
ial population as possible. New points (objects) in the search space
re thus generated by two operations: crossover and mutation. In
ractice, new points in the search space are sampled randomly
aking possible to escape from local minima [20,21].
The strategy implemented for GA in MLR or in PLS regression

an be described through the following steps. Objects (chromo-
omes) are defined as n-element (n-gene) vectors containing as
any elements as descriptors were calculated. Each of these ele-
ents receives a binary code, 1 if the corresponding variable is

elected, and 0 otherwise. The calculation starts with randomly
oded objects, in this study 518, composing the initial popula-
ion. The response of the population is evaluated numerically by
ross-validation of the MLR or PLS models. The fittest objects are
hen selected. Afterwards, these objects undergo the reproduction
tep, which generates new objects. The reproduction step is com-
osed of crossover and mutations. Crossover concerns two selected
bjects (parents) that randomly exchange parts of their genomes
o form two new objects (children). Crossover can be done at one or
everal points (single crossover, double crossover, etc.) of the chro-
osomes, here the double crossover was performed. Mutations are

andom inversions of genes in chromosomes, that happen with a
ow probability, e.g. 0.005. The purpose of mutations is to give a
hance to a variable that was not included in the initial random
istribution, to appear in the coming generation. These different
teps are repeated iteratively until the termination conditions of
he algorithm are fulfilled, here 100 was the predefined maximum
umber of generations. Finally, as results might be dependent on
he initial variable population constructed randomly, their valid-
ty should be checked by performing different runs starting from
ifferent initial distributions, in this study 5 replicate runs were
erformed [22,23]. In this study, the variables that were finally kept
or PLS model building are those included in 80% or more of the GA
elections.

.5. Molecular descriptors

Molecular descriptors are currently of much interest in chem-
stry, pharmaceutical sciences, health research, etc. They can be
efined as numbers, being the final result of a mathematical
rocedure, which are derived from translating the symbolic repre-
entation of the molecule into a useful numeric value (theoretical
escriptor). They can also be the result of a standardized experi-
ent (experimental descriptors). In this context the term “useful”
eans that the resulting number can contribute to a better under-

tanding of molecular properties and/or can be used in a model to
redict properties of chemical compounds.

The number of structural descriptors, which can be ascribed
o an individual analyte, is practically unlimited. For example, the
ragon software which is frequently used in this context, calculates
224 molecular descriptors [24]. Among the theoretical descrip-
ors, depending on the initial representation of the molecule,
ne can distinguish zero- (0D), one- (1D), two- (2D), three- (3D)

nd four-dimensional (4D) descriptors. Since the 0D-descriptor is
erived from the molecular formula, it is independent of the molec-
lar structure. Examples are the number and type of atoms, the
olecular weight and any function of the atomic properties (e.g.

um of van der Waals volumes).
1 (2010) 1711–1718 1713

If the molecule is represented considering its functional groups
or substituents, the derived molecular descriptors are called 1D-
descriptors, e.g. atom-centered fragments, functional group counts.
When the topological representation of the molecule is considered,
the resulting descriptors are called 2D-descriptors. They describe
how atoms are connected in a molecule, their type of bonding
and the interaction of particular atoms, e.g. total path counts. A
3D-representation of a molecule is called a geometrical represen-
tation and allows describing not only a representation of the nature
and connectivity of the atoms, but also the overall spatial config-
uration of the molecule. The 4D-descriptors are derived from the
stereoelectronic representation (or lattice representation) of the
molecule. These descriptors result from the molecular represen-
tation, which is related to the molecular properties arising from
the electron distribution–interaction of the molecule with probes
characterizing the space surrounding them [11].

2.6. QSRR model statistics

The quantitative structure–retention relationship (QSRR) equa-
tions were derived by means of different modeling methodologies,
employing the Matlab 7.0.1 software (The Mathworks, Natick, MA,
USA), to describe the retention times (tR) of the peptides based on
the given set of molecular descriptors. Before QSRR model building,
the descriptor values were autoscaled in order to remove undesired
scale differences.

The obtained QSRR models require an estimation of their pre-
dictive performances, which was done using an independent test
set. For all modeling methodologies the same training (50 peptides)
and test (19 peptides) sets were used. The splitting of the data into
training and test sets was done by random selection.

Selection of the optimal number of factors is crucial when con-
structing a model. Usually, model complexity is estimated using the
cross-validation procedure, in its simplest variant, leave-one-out
cross-validation (LOO-CV). This standard LOO procedure is based
on taking out one sample from the entire data set as the hold-out
case. Then a model is built on the remaining samples. The result-
ing model is used to predict the hold-out case. This entire process
is repeated until each sample once became the hold-out case. The
root mean squared error of cross-validation (RMSECV) is calculated
as:

RMSECV(f ) =

√∑m
i−1(yi − ŷi)

2

m

where yi is the experimental value of the dependent variable for
the ith object, ŷi is the predicted value for the ith object based on
the model built with f factors, and m is the number of objects.

In order to characterize model fit and its prediction abilities,
usually root mean squared error of prediction (RMSEP) is calculated
as:

RMSEP(f ) =

√∑mt
i=1(ytest

i
− ŷtest

i
)2

mt

where mt is the number of samples in the test set, whereas ytest
i

and
ŷtest

i
denote the experimental value and the predicted value from
the model with f factors for the ith object from test set.
Both root mean squared error of cross-validation (RMSECV) with

the leave-one-out (LOO) procedure and root mean squared error of
prediction (RMSEP) were calculated with the use of Matlab 7.0.1
software.
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Table 1
The set of 69 peptides studied. For amino acid abbreviations see text. Ac-NH: Acetylation; -CONH2: amidation.

No. Code Amino acid sequence No. Code Amino acid sequence

1 1d AA 36 65p EGVLY-CONH2

2 2d AG 37 67p GLSPMIETIDQVR
3 3d AF 38 69p AGGYKPFNLETA-CONH2

4 4d YL 39 70p GAPGGPAFPGQTQDPLYG-CONH2

5 5d DD 40 71p Ac-NH-ETHLHWHTVAK-CONH2

6 6d ML 41 76p LHWHT
7 7d WW 42 77p HLHWHT
8 8d GM 43 79p ETHLHWHT
9 9d GH 44 82p EVHHQK
10 10d GL 45 83p EVHHQKLVFF
11 11d WF 46 86p Ac-NH-EVHHQKLVFF
12 11t GHG 47 87p EVRHQKLVFF
13 11p DRVYIHPF 48 88p Ac-NH-EVRHQKLVFF
14 18p HTVAKETS 49 89p DAEFRH
15 20p HWHTVAKETS 50 91p DAEFGH
16 21p LHWHTVAKETS 51 126p GLFDVIKKVASVIGGL-CONH2

17 27p Ac-NH-HNPGYPHNPGYPHNPGY PHNPGYP-CONH2 52 127p DVIKKVASVIGGL-CONH2

18 35p EVHHQKLVFFAKDVGSNK-NH2 53 128p IKKVASVIGGL-CONH2

19 41p DAEFRH-CONH2 54 129p KVASVIGGL-CONH2

20 43p DAEFGH-CONH2 55 130p GLFDVIKKVASVIGG-CONH2

21 45p DAEFRHDSG-CONH2 56 131p GLFDVIKKVASVIG-CONH2

22 46p DAEFGHDSG-CONH2 57 132p GLFAVIKKVASVIGG-CONH2

23 47p DAEFRHDSGY-CONH2 58 133p GLFAVIKKVASVIG-CONH2

24 48p Ac-NH-DAEFRHDSGY-CONH2 59 134p GLFDVIKKVASVI-CONH2

25 49p DAEFGHDSGF-CONH2 60 135p GLFDVIKKVAS-CONH2

26 50p Ac-NH-DAEFGHDSGF-CONH2 61 136p GLFDVIKKV-CONH2

27 55p EVHHQKLVFF-CONH2 62 137p GLFDVIK-CONH2

28 57p EVRHQKLVFF-CONH2 63 138p DVIKKVASVIG-CONH2

29 58p Ac-NH-EVRHQKLVFF-CONH2 64 139p IKKVASV-CONH2

30 59p LVFF-CONH2 65 140p GLFDVIKASVIGGL-CONH2

31 60p GSNKGAIIGLM-CONH2 66 141p GLFDVVIGGL-CONH2
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32 61p GKTKEGVLY-CONH2

33 62p KTKEGVLY-CONH2

34 63p TKEGVLY-CONH2

35 64p KEGVLY-CONH2

. Material and methods

.1. Chemicals

Acetonitrile (ACN, HPLC grade) from Merck (Darmstadt,
ermany) and trifluoroacetic acid (TFA) from Fluka (Buchs, Switzer-

and) were used. Water was prepared with a Milli-Q Water
urification System (Millipore Corporation, Bedford, MA, USA). All
nalyzed peptides are presented in Table 1. Angiotensin II and
he 20 natural amino acids: alanine (A), arginine (R), asparagine
N), aspartic acid (D), cysteine (C), glutamic acid (E), glutamine
Q), glycine (G), histidine (H), isoleucine (I), leucine (L), lysine (K),

ethionine (M), phenylalanine (F), proline (P), serine (S), threonine
T), tryptophan (W), tyrosine (Y) and valine (V) were purchased
rom Fluka. Sodium dodecyl sulfate (SDS) and the following pep-
ides were from Sigma–Aldrich (St. Louis, MO, USA): AA, AG, AF, YL,
D, ML, WW, GM, GH, GL, WF and GHG. All other peptides were

ynthesized at the Department of Organic Chemistry, University of
dańsk, Poland [3]. The peptides studied were selected to assure a
ide range of structural diversity, including posttranslational mod-

fications of peptides (e.g. acetylation and amidation).

.2. Equipment and chromatographic conditions

The chromatographic measurements were performed on four
olumns: (1) XTerra MS (XT), 15.0 cm × 0.46 cm i.d. (Waters, Mil-
ord, MA), packed with octadecyl-bonded silica; (2) Acclaim 300

18, 3 �m, 5.0 cm × 0.46 cm i.d. (Dionex Corporation, Sunnyvale,
A, USA), packed with spherical particles of octadecyl-bonded
ilica; (3) Cadenza 5CD-C18, 5 �m, 7.5 cm × 0.46 cm i.d. (Imtakt
orporation, Kyoto, Japan), packed with 5 �m spherical parti-
les of porous, octadecyl-bonded silica, and (4) Presto FT-C18,
67 142p GLFAVIKKVASVI-CONH2

68 143p GLFDVIKKVASV-CONH2

69 144p GLFAVIKKVASV-CONH2

3.0 cm × 0.46 cm i.d. (Imtakt Corporation), packed with 5 �m
spherical particles of non-porous, octadecyl-bonded, end-capped
silica.Chromatographic measurements were performed on a
Merck-Hitachi LaChrom system (Merck-Hitachi, Frankfurt-Tokyo,
Germany-Japan), equipped with a UV/vis detector (L-7400),
autosampler (L-7200), thermostat (L-7360), pump (L-7100) and the
software D-7000 HPLC System Manager, version 4.1. The ChemSta-
tion program was used for data collection.

Gradient HPLC elution was carried out with solvent A (water
containing 0.10% trifluoroacetic acid) and solvent B (acetonitrile
with 0.10% trifluoroacetic acid). The mobile phase used was fil-
tered through a GF/F glass microfibre filter (Whatman, Maidstone,
UK) and degassed with helium during the analysis. On the XTerra
MS column the gradient during the analysis was formed from 0%
to 60% B within 20 min. For the other columns the gradient was
formed from 4% to 60% B, with a gradient time tG of 20 min. All
columns were thermostated at 40 ◦C. The injected sample volume
was 20 �l. The chromatographic measurements were performed
at an eluent flow rate of 1 ml/min. The eluent was monitored at a
detection wavelength of 223 nm. Peptide samples were dissolved
in 0.10% of aqueous trifluoroacetic acid (TFA).

3.3. Structural descriptors of the peptides

The experimental descriptor, log SumAA, was calculated as the
logarithm of the summed individual amino acid gradient retention
times measured under the same HPLC conditions as the peptides.

The descriptor, log Sum(k + 1)AA [2], was calculated as the logarithm
of the sum of the k + 1 values of the amino acids. For 13 non-retained
amino acids (A, R, N, D, C, E, Q, G, H, K, P, S, T) the median k over the
different systems studied in [2] was taken and rounded, resulting in
k = 0 for each of those amino acids. For the 7 retained amino acids,
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Table 2
Predictive abilities of the QSRR models with three structural descriptors (Eqs. (1)
and (2)) of which one is either log SumAA or log Sum(k + 1)AA. The RMSECV is the
root mean squared error of cross-validation and was calculated by the leave-one-
out procedure; RMSEP is the root mean squared error of prediction and R2 is the
determination coefficient (square of correlation coefficient).

Column log SumAA log Sum(k + 1)AA

XTerra MS RMSECV 1.52 1.48
RMSEP 1.99 1.95
R2 0.86 0.87

Acclaim
300 C18

RMSECV 1.98 1.96
RMSEP 2.15 2.14
R2 0.80 0.80
R2 0.86 0.87

Cadenza
5CD-C18

RMSECV 1.51 1.49
RMSEP 1.79 1.76
R2 0.87 0.87
R2 0.86 0.87

molecules, based on the calculation of equivalence classes from the
molecular graph. Among them, the most important are topological
information indices (IVDE), which are graph-theoretical invariants,
and can be considered as a quantitative measure of the lack of

Table 3
Descriptors selected by stepwise-MLR at QSRR model building.

Column Selected descriptors
K. Bodzioch et al. / Ta

heir individual k on a given system was used. Not k but k + 1 were
sed to avoid zero values for the non-retained factors.

Some theoretical descriptors for the peptides, i.e. the loga-
ithm of the peptide’s van der Waals volume, log VDWVol, and
he logarithm of its theoretically calculated n-octanol–water parti-
ion coefficient, c log P, were calculated by the standard molecular

odeling program HyperChem for personal computers with the
xtension ChemPlus (HyperCube, Gainesville, FL, USA). This soft-
are also performed geometry optimization of the peptide’s

tructures using the molecular mechanics force field method
MM+) with the Polak–Ribière conjugate gradient algorithm and
ith an RMS gradient of 0.05 kcal/(Å mol) as stopping criterion.
ragon Professional 5.0 software version, 2004 (Milano Chemo-
etrics and QSAR Research Group, Talete, Milano, Italy) was then

sed to calculate 1630 molecular descriptors, belonging to 20
lasses, from the geometrically optimized peptide structures. Cor-
elated descriptors (r > 0.99) and constant values were deleted in
ragon. As a consequence 514 descriptors were retained as possible
redictor variables. Finally, with the addition of the four descriptors
escribed above, 518 descriptors were used for the modeling.

. Results

.1. QSRR models built from an a priori chosen small set of
olecular descriptors

In this case, QSRR models are build, based on a limited number
f well understood descriptors, that can easily be linked to known
hysicochemical properties. Lately, a QSRR model has been pro-
osed by Kaliszan et al. [25,26] to predict the gradient retention
imes of peptides under given HPLC conditions. This model employs
he following structural descriptors: the logarithm of the sum of
radient retention times of the amino acids composing the indi-
idual peptide, log SumAA; the logarithm of the peptide’s van der
aals volume, log VDWVol; and the logarithm of its theoretically

alculated n-octanol–water partition coefficient, c log P. This QSRR
quation has the following form:

R = b0 + b1 logSumAA + b2 logVDWVol + b3c logP (1)

here tR is the peptides gradient RPLC retention time and b0–b3 are
egression coefficients estimated by MLR. To estimate log SumAA,
ne needs the retention times of the 20 natural amino acids deter-
ined at the same HPLC conditions as the peptides.
Since, in previous studies [1,3,4,17,26,27], beside good predic-

ive abilities of the above QSRR model, it was also observed that
ost amino acids were hardly retained at the applied RPLC con-

itions, i.e. they eluted close to the dead time, we proposed an
lternative log Sum(k + 1)AA descriptor [2]:

R = b0 + b1 logSum(k + 1)AA + b2 logVDWVol + b3c logP (2)

The predictive abilities of both QSRR models containing either
og SumAA or log Sum(k + 1)AA are presented in Table 2. It can
e noticed that the QSRR model containing the log Sum(k + 1)AA
escriptor has similar predictive abilities, even slightly better than
he QSRR model containing log SumAA.

.2. QSRR models derived starting from the large set of molecular
escriptors
In this approach, to model the retention times of 69 peptides,
ix different methodologies were used: stepwise-MLR, PLS and PLS
erformed on only the 30% of descriptors that are the best corre-

ated with y (in this case, tR), UVE-PLS, GA-MLR and GA-PLS.
Presto
FT-C18

RMSECV 2.60 2.60
RMSEP 2.99 2.94
R2 0.64 0.64

4.2.1. Stepwise-multiple linear regression (stepwise-MLR)
Stepwise-MLR models, using autoscaled data and evaluated by

LOO-CV, were built. The models obtained are constituted by four
descriptors for XTerra MS and Cadenza 5CD-C18 columns, by seven
for Acclaim 300 C18 and by five for Presto FT-C18 column (Table 3).
Those models are characterized by RMSECV values between 1.03
and 1.86, RMSEP values between 2.11 and 2.95 and predictive R2

values between 0.58 and 0.76 (Table 4). Two remarkable observa-
tions can be noticed. First of all, the log Sum(k + 1)AA descriptor is
selected for all models out of 518 potential candidates. It demon-
strates its high relevance and good correlation with the retention
time. Secondly, the models derived from the full descriptor set have
considerably smaller RMSECV values than the models described by
Eqs. (1) and (2). However, their predictive properties do not seem
to be better because their RMSEP are similar, or even slightly worse
than those from Eqs. (1) and (2).

To be able to relate the selected descriptors to properties of
molecules a short characterization of the descriptors is necessary.
The description is done by groups, e.g. 2D autocorrelations, consti-
tutional, geometrical, WHIM descriptors. Individual interpretation
of given descriptors is often rather difficult, since for the theoreti-
cal molecular descriptors it is not always evident to find a link with
physicochemical properties.

The descriptors chosen by stepwise-MLR belong to several
different groups. Constitutional descriptors, like nRO5, are 0D-
descriptors, which are the most simple and commonly used
descriptors, independent from molecular connectivity and con-
formations, accounting for molecular composition, like atom and
bond counts, molecular weight, sum of atomic properties, etc. [11].
Parameter nRO5 gives information on the number of 5-membered
rings. Information indices, calculated as information content of
XTerra MS log Sum(k + 1)AA, c log P, nRO5, HOMA
Acclaim 300 C18 log Sum(k + 1)AA, log SumAA, IVDE, MLOGP2,

c log P, E2u, MATS5v
Cadenza 5CD-C18 log Sum(k + 1)AA, c log P, nRO5, HOMA
Presto log Sum(k + 1)AA, c log P, nRO5, RCI, MATS3e
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Table 4
Predictive abilities of the QSRR models characterized by the root mean squared error of cross-validation (RMSECV) calculated by the leave-one-out procedure and by the
root mean squared error of prediction (RMSEP) (n.a.: not applicable).

Column Stepwise-MLR PLS PLS only 30% best
correlated X with y

UVE-PLS (100 times) GA-PLS GA-MLR GA-MLR

XTerra MS No. of chosen descriptors 4 160 10 58 1 7
Cut-off value Alpha 1% n.a. n.a. n.a. n.a. Alpha 1% Alpha 5%
No. of latent variables n.a. 9 6 6 4 n.a. n.a.
RMSECV 1.03 2.51 2.12 1.63 1.70 3.97 2.76
RMSEP 2.11 3.49 3.12 2.73 3.51 4.05 4.92
Predictive R2 0.75 0.47 0.47 0.62 0.52 0.17 0.24

Acclaim
300 C18

No. of chosen descriptors 7 n.a. 167 9 68 3 4
Cut-off value Alpha 1% n.a. n.a. n.a. n.a. Alpha 1% Alpha 5%
No. of latent variables n.a. 9 4 6 3 n.a. n.a.
RMSECV 1.11 2.61 2.56 2.28 2.38 2.53 2.42
RMSEP 2.19 3.42 2.99 2.65 3.48 3.57 3.56
Predictive R2 0.74 0.51 0.51 0.61 0.53 0.41 0.38

Cadenza
5CD-C18

No. of chosen descriptors 4 n.a. 158 8 48 1 5
Cut-off value Alpha 1% n.a. n.a. n.a. n.a. Alpha 1% Alpha 5%
No. of latent variables n.a. 9 6 6 4 n.a. n.a.
RMSECV 1.10 2.36 2.05 1.69 1.89 2.85 2.29
RMSEP 1.95 3.27 2.88 2.28 2.85 3.96 4.29
Predictive R2 0.76 0.48 0.49 0.71 0.57 0.17 0.22

Presto
FT-C18

No. of chosen descriptors 5 n.a. 177 17 44 1 4
Cut-off value Alpha 1% n.a. n.a. n.a. n.a. Alpha 1% Alpha 5%

s
a
s
a
m
t
b
a
w
a
2
s
t
r

O
a
r
b
H
t
b
a
m
t
d
3
d
f
d

s
g

4

R
a

No. of latent variables n.a. 4 4
RMSECV 1.86 3.32 2.89
RMSEP 2.95 3.52 3.31
Predictive R2 0.58 0.42 0.45

tructural homogeneity or the diversity of the molecular graph
nd in this way they are related to symmetry associated with
tructure. The two descriptors, MATS5v and MATS3e, belong to 2D
utocorrelations, which are measures of the homogeneity of the
olecular structure, i.e. of how the considered property is dis-

ributed along the topological structure. 2D autocorrelations can
e weighted by the atomic mass, polarizability, electronegativity,
nd van der Waals volumes (MATS5v – Moran autocorrelation,
eighted by atomic van der Waals volumes, MATS5v – Moran

utocorrelation, weighted by atomic Sanderson electronegatives).
D autocorrelations contain topological information able to capture
tructural complexity. In this study the 2D autocorrelation descrip-
ors describe correlations between the molecular structures and
etention parameters.

Geometrical descriptors (3D descriptors), like HOMA (Harmonic
scillator Model of Aromaticity index) and RCI (Jug RC index) view
molecule as a rigid geometrical object in a space and allow rep-

esentation of not only the nature and connectivity of the atoms
ut also overall spatial configuration of the molecule. More precise,
OMA and RCI are aromaticity indices. HOMA encodes informa-

ion of any conjugated system, and can be applied as a descriptor of
oth local and global aromaticity, while RCI are derived only from
romatic rings. WHIM descriptors, like E2u, are three-dimensional
olecular indices calculated from the (x, y, z) atomic coordinates

hat represent different sources of chemical information. These
escriptors try to capture relevant information about the whole
D-molecular structure in terms of size, shape, symmetry and atom
istribution, e.g. since WHIM descriptors are sensitive to any con-
ormational change in the molecule they are able to distinguish
ifferent conformations of the same molecule.

MLOGP2 (molecular properties descriptor), which stands for
quared Moriguchi octanol–water partition coefficient (log P2)
ives information about the liphophilicity [11].
.2.2. Partial least squares (PLS)
The partial least squares (PLS) models were constructed for each

PLC system separately. The retention predictions of those models
re characterized in Table 4. Since the PLS methodology performed
2 5 n.a. n.a.
2.52 2.52 3.69 3.28
3.21 4.81 4.07 3.67
0.51 0.48 0.096 0.31

not so promising as it was expected (results were considerably
worse than from MLR), the PLS analysis was performed again but
only on the 30% of descriptors that are best correlated with y. It
allowed to decrease the model complexity (number of PLS factors)
and also improved the predictive performance of the method. These
last models provide RMSECV values between 2.05 and 2.89, RMSEP
values between 2.88 and 3.31 and predictive R2 values between
0.45 and 0.51. Even though the latter models had improved results
they are still worse than with MLR.

4.2.3. Uninformative variable elimination partial least squares
(UVE-PLS)

The variable elimination procedure was applied to the complete
data set of 518 descriptors. The UVE-PLS analysis was performed
100 times with the addition of 125 artificial variables. For the
different RPLC columns different numbers of descriptors were
retained during the elimination procedure (Table 4). Overall, the
elimination procedure retained two constitutional descriptors,
four 2D-descriptors, eight 3D-descriptors, three functional groups
counts, two molecular properties and again log Sum(k + 1)AA, fur-
ther log SumAA, and log VDWvol.

The final PLS model was built using the training set of 50 sam-
ples and then tested with the remaining 19 samples. The optimal
number of factors was determined using LOO-CV. The predictions
quality obtained is presented in Table 4. Generally, the RMSECV
values for those models are between 1.63 and 2.52, RMSEP val-
ues between 2.28 and 3.21 and predictive R2 values between 0.51
and 0.71 (Table 4). These models are better than the previous PLS
models but still worse than the MLR models.

The eight most important descriptors, i.e. the descriptors that
present the highest weights over all four HPLC systems, are pre-
sented with a brief description in Table 5. 3D-MoRSE descriptors,
like Mor08u, Mor08v, Mor08p, present information from the 3D

atomic coordinates by using the same transform as in electron
diffraction studies. They give an idea of how a weighting prop-
erty is distributed. The GETAWAY descriptors (3D-descriptors) are
sensitive to molecular branching and cyclicity and they also give
information about the presence of significant substituents in the
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Table 5
Descriptors selected by UVE-PLS at QSRR model building. Only these descriptors are listed which provide the highest weights over all four HPLC systems studied.

Selected descriptors Class of descriptors Description

Mor08u 3D-MORSE 3D-MoRSE-signal 08/unweighted
Mor08v 3D-MORSE 3D-MoRSE-signal 08/weighted by van der Waals volumes
Mor08p 3D-MORSE 3D-MoRSE-signal 08/weighted by atomic polarizability
R1u+ GETAWAY descriptors R maximal autocorrelation of lag1/unweighted
nRSR Functional groups counts Number of sulfides
log Sum(k + 1)AA Lately proposed in [2] The logarithm of the sum of the k + 1 values of the amino acids (see Section 3.3)
log SumAA Proposed in [3,28] The logarithm of the summed individual amino acid gradient retention times (see Section 3.3)
log VDWvol Proposed in [3,28] The logarithm of the peptide’s van der Waals volume

Table 6
Descriptors selected by GA at GA-PLS QSRR model building.

Column 0D descriptors 1D descriptors 2D descriptors 3D descriptors Others Empirical descriptors

XTerra MS 2: Topological descriptors 2: Randic molecular
profiles

4: Functional group
counts

log Sum(k + 1)AA

3: Information indices 2: Geometrical descriptors 5: Atom-centered
fragments

log SumAA

8: 2D autocorrelcation 3: RDF descriptors
1: Edge adjacency indices 14: 3D-MoRSE descriptors
1: Topological charge
indices

2: WHIM descriptors

1: Eigenvalue-based
indices

8: GETAWAY descriptors

Acclaim 300C18 1: Charge
descriptors

2: Topological descriptors 1: Randic molecular
profiles

5: Functional group
counts

log Sum(k + 1)AA

1: Molecular
properties

5: Information indices 1: Geometrical descriptors 4: Atom-centered
fragments

log SumAA

12: 2D autocorrelcation 4: RDF descriptors log VDWvol

1: Burden eigenvalues 12: 3D-MoRSE descriptors
1: Topological charge
indices

4-WHIM descriptors

11: GETAWAY descriptors

Cadenza 5CD-C18 1: Topological descriptors 1: Geometrical descriptors 3: Functional group
counts

log Sum(k + 1)AA

2: Information indices 2: RDF descriptors 2: Atom-centered
fragments

log SumAA

9: 2D autocorrelcation 5: 3D-MoRSE descriptors log VDWvol

3: Topological charge
indices

2: WHIM descriptors

15: GETAWAY descriptors

Presto FT-C18 1: Constitutional
descriptors

1: Charge
descriptors

2: Topological descriptors 2: RDF descriptors 1: Functional group
counts

log SumAA

3: Walk and path counts 11: 3D-MoRSE descriptors
2: Information indices 2: WHIM descriptors
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olecule. From the descriptors with the highest weights the nRSR
epresent functional groups counts. This class of molecular descrip-
ors is based on the counting of chemical functional groups, here
ulfides [11].

.2.4. Genetic algorithms for variable selection
Genetic algorithms as a variable selection step was used for

oth partial least squares (GA-PLS) and multiple linear regression
GA-MLR). As shown in Table 4, GA-MLR models present the worst
redictive performances overall of all tested methodologies. There-
ore, only the results of GA-PLS are discussed further.

For each chromatographic system, GA variable selection was
arried out with the parameters described earlier (see Section 2.4).
t resulted in different number of descriptors included in the mod-
ls for different columns (Table 4). It can be observed that for all

hromatographic systems mainly 2D autocorrelations, 3D-MoRSE
nd GETAWAY descriptors were chosen (Table 6). The meaning of
hose groups of descriptors was given in Sections 4.2.1 and 4.2.3.

After the variable selection step, the partial least squares anal-
sis was performed. The optimum number of latent variables to
10: GETAWAY descriptors
s

be included in the calibration model was determined from the
RMSECV. The performance of the models was estimated by comput-
ing the RMSECV and RMSEP values which are presented in Table 4.
The models provide RMSECV values between 1.70 and 2.52, RMSEP
values between 2.85 and 4.81 and predictive R2 values between
0.48 and 0.57 (Table 4). However, the predictive performance of
these models is still worse than for the MLR models.

5. Discussion and conclusions

The comparison of the individual QSRR models, built start-
ing from the large set of molecular descriptors, found that
stepwise-MLR and UVE-PLS were both producing good predic-
tions.
Table 4 shows that the GA-PLS models were performing similar
to the PLS models, but in GA-PLS less complexity of the models
was noted which goes also with a slight prediction improvement
over the PLS models. Moreover, as it was expected, the PLS models
with only the 30% of descriptors that are best correlated with y
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ere performing better than the PLS models built starting from all
escriptors (518 descriptors).

When one compares the prediction performance of the QSRR
odels built from an a priori chosen small set of descriptors and of

he best QSRR models built starting from a large set of descriptors,
t can be seen that the first models were performing slightly better.
rom the models built from large set of descriptors, the stepwise-
LR models also here were found to perform best. Moreover, the

mpirical QSRR equations (Eqs. (1) and (2)) employ well known
escriptors which can easily be linked to physicochemical prop-
rties of the molecule, while methods like PLS, UVE-PLS, GA-PLS
se combinations of the original variables (latent factors), which
ake understanding of the resulting equation rather impossible.

herefore, MLR or MLR with feature selection (stepwise-MLR) can
e preferred in QSRR, especially when they also result in the best
odels.
It can be concluded from the variables selected by the several

ethodologies that important information for the retention mech-
nism of RPLC was given by 2D- and 3D-descriptors. Most of the
mportant molecular descriptors selected account for hydrogen-
onding properties, molecular size, and -complexity. It must be
tressed here that, in each methodology the descriptors from the
mpirical QSRR equations, especially log Sum(k + 1)AA, also were
etained.

For some of the theoretical descriptors selected, it is not evi-
ent to explain their meaning and relation to the chromatographic
etention, but they are needed in order to obtain proper QSRR pre-
ictions.

It should be noted here that the worst predictive results over-
ll were achieved on the Presto FT-C18 column. Apparently, this
olumn is less suitable for a chromatographic characterization
modeling) of peptides and amino acids.
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